Modules which are coinvariant under automorphisms of their projective covers
نویسندگان
چکیده
منابع مشابه
Modules which are invariant under monomorphisms of their injective hulls
In this paper certain injectivity conditions in terms of extensions of monomorphisms are considered. In particular, it is proved that a ring R is a quasi-Frobenius ring if and only if every monomorphism from any essential right ideal of RR into R (N) R can be extended to RR. Also, known results on pseudo-injective modules are extended. Dinh raised the question if a pseudo-injective CS module is...
متن کاملK3 surfaces of Picard rank one which are double covers of the projective plane
Andreas-Stephan ELSENHANS a and Jörg JAHNEL a a Universität Göttingen, Mathematisches Institut, Bunsenstraße 3–5, D-37073 Göttingen, Germany 1 Abstract. We construct explicit examples of K3 surfaces over Q which are of degree 2 and the geometric Picard rank of which is equal to 1. We construct, particularly, examples in the form w2 = det M where M is a symmetric (3× 3)-matrix of ternary quadrat...
متن کاملQuasi-projective covers of right $S$-acts
In this paper $S$ is a monoid with a left zero and $A_S$ (or $A$) is a unitary right $S$-act. It is shown that a monoid $S$ is right perfect (semiperfect) if and only if every (finitely generated) strongly flat right $S$-act is quasi-projective. Also it is shown that if every right $S$-act has a unique zero element, then the existence of a quasi-projective cover for each right act implies that ...
متن کاملON PROJECTIVE L- MODULES
The concepts of free modules, projective modules, injective modules and the likeform an important area in module theory. The notion of free fuzzy modules was introducedby Muganda as an extension of free modules in the fuzzy context. Zahedi and Ameriintroduced the concept of projective and injective L-modules. In this paper we give analternate definition for projective L-modules. We prove that e...
متن کاملComplexes of $C$-projective modules
Inspired by a recent work of Buchweitz and Flenner, we show that, for a semidualizing bimodule $C$, $C$--perfect complexes have the ability to detect when a ring is strongly regular.It is shown that there exists a class of modules which admit minimal resolutions of $C$--projective modules.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Algebra
سال: 2016
ISSN: 0021-8693
DOI: 10.1016/j.jalgebra.2016.08.004